n5-STZ Diabetic Model Develops Alterations in Sciatic Nerve and Dorsal Root Ganglia Neurons of Wistar Rats

نویسندگان

  • Francisco Walber Ferreira-da-Silva
  • Kerly Shamyra da Silva-Alves
  • Matheus Lemos-dos-Santos
  • Keciany Alves de Oliveira
  • Humberto Cavalcante Joca
  • Otoni Cardoso do Vale
  • Andrelina Noronha Coelho-de-Souza
  • José Henrique Leal-Cardoso
چکیده

One experimental model of diabetes mellitus (DM) similar to type II DM, called n5-STZ, is obtained by a single injection (via i.p.) of streptozotocin (STZ) in the 5th day of life of newborn rats. The present investigation aimed to characterize alterations in excitability of rat peripheral neurons in n5-STZ model. n5-STZ DM was induced, and electrophysiological evaluation was done at 12th week of rat life. Rats developed glucose intolerance, sensory alteration, and hyperglycemia or near-normoglycemia (21.2 ± 1.6 and 7.4 ± 0.4 mmol/L). In near-normoglycemia group the significant electrophysiological alteration observed was decreased in amplitude of 2nd wave (2nd component, conduction velocity: 48.8 m/s) of compound action potential (CAP) of sciatic nerve. For hyperglycemic rats, decreased excitability, amplitude, and conduction velocity of 2nd CAP component of sciatic nerve were found; a depolarization of resting potential (4-5 mV) and reduction in maximum ascendant and descendant inclinations of action potential were found in DRG neurons but no alteration on Na(+) current (INa(+) ). Thus, n5-STZ rats develop alterations in excitability which were related to glycemic levels but were not likely attributable to changes on INa(+) . Our data confirm that n5-STZ model is a useful model to study type II DM.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat

Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...

متن کامل

Insulin prevents depolarization of the mitochondrial inner membrane in sensory neurons of type 1 diabetic rats in the presence of sustained hyperglycemia.

Mitochondrial dysfunction has been proposed as a mediator of neurodegeneration in diabetes complications. The aim of this study was to determine whether deficits in insulin-dependent neurotrophic support contributed to depolarization of the mitochondrial membrane in sensory neurons of streptozocin (STZ)-induced diabetic rats. Whole cell fluorescent video imaging using rhodamine 123 (R123) was u...

متن کامل

اثر محافظت عصبی اسید اوریک در پیشگیری از آپوپتوز نورون‌های گانگلیون ریشه پشتی اعصاب نخاعی

Background and Objective: The neuroprotective effect of uric acid as a natural antioxidant on neurodegenerative diseases has been proposed repeatedly, but its antiapoptotic effect on spinal neurons has not been examined yet. Due to the critical role of sensory neurons in the improvement of functional outcome in neuroprotective strategies, the antiapoptotic effect of uric acid on dorsal root gan...

متن کامل

Effects of Insulin on Fibronectin Alterations in Sciatic Nerve of Diabetic Rats-A Brief Report

Objective: Alteration in the basement membrane proteins maybe associated with diabetic neuropathy. Fibronectin is one of the most important components of peripheral nerves basement membrane. In this study we investigated the effects of insulin administration on prevention of alteration in fibronectin contents of sciatic nerve in diabetic rats. Materials and Methods: Twenty-four wistar rats wer...

متن کامل

Galanin and its receptor system promote the repair of injured sciatic nerves in diabetic rats

Various studies have reported that galanin can promote axonal regeneration of dorsal root ganglion neurons in vitro and inhibit neuropathic pain. However, little is known about its effects on diabetic peripheral neuropathy, and in vivo experimental data are lacking. We hypothesized that repeated applications of exogenous galanin over an extended time frame may also repair nerve damage in diabet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013